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Time distribution and loss of scaling in granular flow?
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Abstract. Two cellular automata models with directed mass flow and internal time scales are studied
by numerical simulations. Relaxation rules are a combination of probabilistic critical height (probability
of toppling p) and deterministic critical slope processes with internal correlation time tc equal to the
avalanche lifetime, in model A, and tc ≡ 1, in model B. In both cases nonuniversal scaling properties
of avalanche distributions are found for p ≥ p?, where p? is related to directed percolation threshold in
d = 3. Distributions of avalanche durations for p ≥ p? are studied in detail, exhibiting multifractal scaling
behavior in model A, and finite size scaling behavior in model B, and scaling exponents are determined
as a function of p. At p = p? a phase transition to noncritical steady state occurs. Due to difference in
the relaxation mechanisms, avalanche statistics at p? approaches the parity conserving universality class
in model A, and the mean-field universality class in model B. We also estimate roughness exponent at the
transition.

PACS. 81.05.Rm Porous materials; granular materials – 64.60.Lx Self-organized criticality;
avalanche effect – 02.60.Cb Numerical simulation; solution of equations

1 Introduction

Dynamics of granular materials represents an important
practical and theoretical problem. A new theoretical ap-
proach to the problem of driven granular flow has been
initiated in the past few years [1], which is motivated by
the observed scaling behavior both in the laboratory gran-
ular piles and in natural landslides [2–8]. It has been rec-
ognized that the collective dynamics of grains may lead
to a self-organized critical (SOC) states [1], characterized
by scaling properties of sandslides (avalanches). More-
over, dynamics may depend on various parameters, such
as dimension and mass of individual grains and quality of
their contact surfaces, and on the external conditions. By
varying some of these parameters in a controlled manner,
steady states with different characteristics are reached,
and a phase transition to a steady state with no long-range
correlations occurs when a parameter is varied through
certain critical value [6].

Various cellular automata models have been intro-
duced so far to mimic stochastic variations in the
conditions of toppling [9–14]. One-dimensional rice-pile
automata with stochastic critical slope rules have been
useful in understanding transport properties of rice piles
[9]. Relaxation rules in these models are a kind of branch-
ing processes with internal stochasticity. In two dimen-
sions, two models studied in references [13,14] utilize
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mixed dynamic critical slope (CS) and critical height (CH)
rules, motivated by the observed nonuniversality of the
emergent critical states in natural landslides (for a recent
review see Refs. [15,16]).

In the present work we extend the study of the mod-
els of references [14,13], which we term model A and B,
respectively. In these models stochastic toppling by the
CH mechanism is controlled by an external parameter –
probability of toppling p, which can be attributed to vari-
ations in the external conditions (e.g., wetting), or by in-
ternal kinetic friction, determined globally by the quality
of contact surfaces between grains. In contrast to rice-pile
models of references [9,12], the present models are more
appropriate for the evolution of landscape, in which a vari-
ety of erosion mechanisms might be simultaneously active.

Two types of triggering mechanisms of landslides are
recognized in the literature [16,17,14]: (i) soil moisture,
which is controlled by rainfall and water level, and (ii)
ground motion, which influences slope variation. The lo-
cal shear stress threshold may depend on both slope an-
gle and soil properties. We assume that these triggering
mechanisms are dynamically correlated. By wetting diffu-
sion probability is lowered and grains stick together, thus
building up local heights. However, when the difference
between heights at neighboring sites exceeds certain limit,
the slope mechanism becomes activated.

A simplified picture of the natural mechanisms of ero-
sion is taken into account by combined relaxation rules for
the height transport on a two-dimensional square lattice,
as follows: if at a site (i, j) local height h(i, j) ≥ hc, then
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the site relaxes with probability p as h(i, j) → h(i, j) − 2;
h(i+ 1, j±) → h(i+ 1, j±) + 1. If for finite p some of the
local slopes σ±(i, j) ≡ h(i, j)−h(i+ 1, j±) ≥ σc, then the
site relaxes with probability one by toppling one particle
along each unstable slope, repeatedly until all slopes are
reduced below σc. Here (i + 1, j±) are positions of two
downward neighbors of the site (i, j) on a square lattice
oriented downward, hc = 2, σc = 8.

The system is driven by adding grain from the out-
side at a random site along first row and the system is
let to relax according to the above rules. Another grain
is added when the relaxation process stops. The internal
time scale is measured by the number of steps that the
relaxation process proceeds on the lattice. At time step
t = 1 a site at first row topples after added grain from
outside. According to the above relaxation rules, one or
two grains are toppled from that site, which then appear
at one or two downward neighboring sites. Therefore, mass
flow is only down. However, an instability may propagate
to both downward and upward neighbors of a toppled site
(except for the sites on the first row, which have no up-
ward neighbors), thus triggering four new sites as candi-
dates for toppling per each just toppled site. At one time
step we update in parallel all candidates for toppling. This
comprises the usual definition of the time step in cellular
automata models.

Since the system builds up unstable sites (with respect
to probabilistic CH rule), the above dynamic rules need
to be supplemented by an additional rule, which makes
the difference between two models. In model A, all sites
that are visited by an avalanche at least once are consid-
ered as candidates for toppling until the whole instabil-
ity dies off. In this way a propagating instability has an
internal correlation time tc which is determined by the
dynamics itself. In model B, we set tc = 1. Therefore,
only sites which are in the neighborhood of active sites at
time t may be candidates for toppling in the next time
step t + 1. It should be stressed that, since an avalanche
is extended object, in both models there are many sites
which topple simultaneously and which are not neighbors
in space. In model B next toppled sites are neighbors only
on time scale but not in space, whereas in model A next
toppled sites are not necessarily neighbors neither on tem-
poral nor spatial scale. However, all toppled sites are con-
nected within affected area in space-time dimensions. In
both models particles are added from the outside only on
a random site at the first row and leave the system at
lower (open) boundary. The mass transport is unidirec-
tional (down). However, since the above rules allow an
instability to propagate both forward and backward on a
2-dimensional lattice, and evolve on an internal time scale,
both models are essentially (2+1)-dimensional, with extra
dimension representing the internal time scale. Differences
in the additional relaxation rule lead to different emergent
critical states, as explained below.

In Figure 1 two examples of large avalanches in model
A (below) and model B (top) are shown for values of
the control parameter p = p? at the edge of the scal-
ing region (p? ∼ 0.4, see Sect. 4 for discussion). In both

Fig. 1. Two examples of large avalanches running from left
to right at p = p?: in model A (below) and in model B (top).
Multiple topplings up to forth order are marked by different
degree of gray color.

models multiplicity of topplings at a site (larger number
of topplings is marked by darker gray tone), is induced by
the instability propagating back and forth due to nonlo-
cal relaxation rules. In model A number of candidates for
toppling at each time step is larger compared to model B,
due to internal correlation time typically tc � 1, leading
to more efficient relaxation of unstable sites. On the other
hand, tc = 1 in model B enables building up numerous
unstable sites (with respect to CH rule) for low values of
p ∼ p?. Therefore huge avalanches with perpendicular ex-
tent comparable to the system size (cf. Fig. 1 (top)) occur
frequently, indicating that the anisotropy of the relaxation
events vanishes at p?.

In the limit p = 1 both models reduce to the determin-
istic directed CH model introduced and solved exactly by
Dhar and Ramaswamy in reference [18]. In this limit slopes
are restricted to σ±(i, j) ≤ 1, and thus CS rule remains
inactive.
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Fig. 2. Double-logarithmic plot of the integrated distribution
P (t) vs. t for p = 0.7 and for various lattice sizes L = 12,
24, 48, 96, and 192 (left to right) in model A, obtained by
open boundary conditions. Inset: multifractal spectral function
φt(αt) vs. αt. (Fig. 3 from Ref. [14]).

2 Model A: Multifractal scaling behavior
of landslides

Correlation times tc > 1 in model A are motivated
by varying toppling conditions after an avalanche com-
menced, which represents a natural choice in the case
of long relaxation times, such as geological evolution of
landslides. It has been shown that this type of tempo-
ral disorder is a relevant perturbation both for the evo-
lution of landslides [14] and for directed percolation pro-
cesses [19]. In this model each site develops an individual
time scale of activity, which then contributes to the whole
event (avalanche). As a consequence, the distribution of
avalanche durations PA(t, L) in the scaling region exhibits
multifractal scaling properties when the system size L is
varied, according to the expression:

PA(t, L) = (L/L0)φt(αt);

αt ≡

(
ln

t

t0

)/(
ln

L

L0

)
. (1)

In Figure 2 the distribution of duration of avalanches is
shown for p = 0.7 and various lattice sizes. In the in-
set the spectral function φt(αt) vs. αt is determined by
the scaling plot according to equation (1), with t0 = 1/4
and L0 = 1/4. The integrated distribution of durations
exhibits a power-law behavior as P (t) ∼ t−(τt−1) in the
entire region p? ≤ p < 1, with the p-dependent expo-
nent θ ≡ τt − 1, which is shown in the inset to Figure 3.
Similar nonuniversality with decreasing scaling exponents
with the parameter p are found for the distributions of size
D(s) ∼ s−(τs−1), and mass of avalanches D(n) ∼ n−(τn−1)
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Fig. 3. Average duration time of avalanches of selected length
〈t〉L vs. length L for various values of p = 1, 0.7, 0.6, 0.5, and
0.4 (bottom to top) in model A. Maximal length equals the
system size Lmax = 192, except for p = 0.4, where Lmax = 128.
Inset: scaling exponents θ ≡ τt − 1, z, and τn − 1, defined in
the text, vs. p in the scaling region.

(see Ref. [14] for detailed analysis). Slopes of various
curves in the main Figure 3 determine the dynamic ex-
ponent z(p), which is also shown in the inset to Figure 3.
For values of the control parameter p below a critical value
p? ≈ 0.4 (see below) the critical steady states are no longer
accessible by the dynamics.

3 Model B: Nonuniversal scaling
in granular piles

For finite correlation times, i.e., by setting tc = 1,
avalanches have in the average a reduced number of top-
plings per site, compared with model A for the same value
of the control parameter p. This leads to a smaller inci-
dence of large avalanches, and thus to increase of the scal-
ing exponents with decreasing probability of toppling p.
In Figure 4 the probability distribution of avalanche du-
rations is shown for few values of p in the scaling region.
On the other hand, for short correlation times the balance
between the CS and CH toppling mechanisms is altered:
by lowering p the system builds up heights faster than in
the case of model A, and thus the CS mechanism becomes
more effective, and eventually prevails at the boundary of
the scaling region at p?. We find numerically that scaling
behavior is lost at p? ≤ 0.5 [13]. The scaling behavior for
p? ≤ p < 1 is characterized by nonuniversal p-dependent
scaling exponents (see inset to Fig. 5 and Ref. [13]).
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Fig. 4. Double-logarithmic plot of the integrated distribution
P (t) vs. t for various values of the parameter p = 1, 0.8, 0.7,
0.6, and 0.5 (top to bottom) and system size L = 192 in model
B. Inset: finite size scaling plots for the same values of p as
in the main figure (left to right). For each plot three different
lattice sizes L = 48, 96, and 192 are used. Plots for different
values of p are shifted to the right for easier display.

The scaling properties of the distribution of avalanche
durations are determined by using the following finite-size
scaling form

PB(t, L) ∼ L−θzP(tL−z) , (2)

where θ ≡ τt−1 as above, and z is the dynamic exponent,
which also depends on p. The scaling plots of PB(t, L)
for various values of p in the scaling region and for three
system sizes at each value of p, are shown in the inset to
Figure 4. Similar scaling properties are found for the dis-
tributions of size and length of avalanches (see Ref. [13]
for detailed discussion). In addition to the temporal dis-
tribution discussed above, here we also concentrate on the
distribution of mass of avalanches,PB(n,L), satisfying the
scaling form PB(n,L) ∼ nτn−1Q(nL−Dn), where mass n
of an avalanche is determined as total number of grains
that slide during one avalanche. In Figure 5 the distribu-
tion of mass of avalanches is shown for few different val-
ues of the parameter p in the scaling region. In the inset
to Figure 5 we plot the exponents θ(p) and τn(p)− 1, for
duration and mass of avalanches, respectively, and the dy-
namic exponent z(p), and fractal dimension of mass Dn(p)
against p. For p ≥ 0.5 the following scaling relations are
satisfied (cf. inset to Fig. 5): (τn − 1)Dn = zθ = α, where
α ≡ τ` − 1 is the exponent of length of avalanches, which
is determined in reference [13]. The dynamic exponent z
which appears in the scaling form (2) can also be deter-
mined from slopes of the curves 〈t〉` vs. `, similar as we
have determined it in model A. Obtained values are in a
good agreement, within numerical error bars, with those
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Fig. 5. Double-logarithmic plot of the integrated distribution
of mass of avalanche D(n) vs. mass n for L = 192 and for
p = 1, 0.8, 0.7, 0.6, and 0.5 (top to bottom) in model B. Inset:
scaling exponents α ≡ τ` − 1, θ ≡ τt − 1, and τn − 1, fractal
dimensions z and Dn, and products Dn(τn − 1) = zθ plotted
against p in the scaling region (see text).

obtained from the scaling plots in Figure 4. Values of the
exponents at p = 0.4 are taken from the straight sec-
tions of the lines representing distributions of duration
and mass for smaller system sizes L ≤ 128. As indicated
in the inset to Figure 5, these values do not satisfy scal-
ing relations within error bars, indicating that p = 0.4 is
already beyond the edge of the scaling region in model B
(see discussion in Sect. 4).

4 Universal criticality at the edge
of the scaling region

When the control parameter p is varied through a critical
value p? we find that the scaling behavior of the avalanche
distributions is lost, indicating that self-organized critical
states are no longer accessible by the dynamics. By nu-
merical simulations of various distributions and applying
the appropriate scaling analysis it was shown that critical
steady states disappear below p = 0.4 in model A [14],
and below p = 0.5 in model B [13]. Here we argue that
dynamic rules with different correlation times tc in these
models lead to separate prevailing relaxation mechanisms
at the edge of the scaling region, which lead to different
values of p? and to two different universality classes of
scaling behavior. In particular, in model A we find that
the scaling exponents of large avalanches θ(p?), τs(p

?),
etc., are close to the universality class of parity-conserving
(PC) branching and annihilating random walks [20,21],
whereas in model B the exponents at p? reach the values
of the mean-field SOC universality class.
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Although the relaxation rules in both model A and
model B are complex interplay of the probabilistic criti-
cal height and deterministic critical slope rules, we may
distinguish two basic type of local branching and annihi-
lating processes that take part to propagate an avalanche
in these models. Propagation of an avalanche may stop at
a site to which one or two particles drop in time step t,
in the following two cases: (1) one particle drop will not
continue if the site had height zero, that is “annihilation”
A→ 0 occurs with probability 1−ρ, where ρ is the dynam-
ically changing probability that a site has height h ≥ 1; (2)
when two particles drop to a site at time t, the avalanche
may not proceed if the diffusion probability p is too low,
i.e., A + A → 0 occurs with probability 1 − p. Note that
since number of particles is conserved by the processes in
the interior of the pile, “annihilation” means accumulation
of particles at a site, which thus will take part in future
events, in contrast to the case of chemical reactions, where
particles are extinct. When the conditions for toppling are
fulfilled, propagation of an avalanche represents a branch-
ing process which consists of two steps. A toppled site at
time t transfers two particles forward, however, the insta-
bility is transferred to its four neighbors, but the site itself
can not topple in the next time step. Toppling of an iso-
lated site away from the open boundaries by the critical
height (CH) rule makes four neighboring sites as candi-
dates for toppling in the next time step, and if these four
sites topple, they make nine new candidates for toppling
etc., along the chain 1→ 4→ 9→ 16→ 25, ... Since each
toppled site, both initial and triggered sites, topple by two
particles, in CH mechanism, this toppling chain represents
a reaction A → (m + 1)A with odd number of offsprings
m = 3, 5, 7, 9, ... per each initial particle. The same con-
clusion is true for topplings by the critical slope (CS) rule
with two simultaneously unstable slopes. If, however, a site
topple by critical slope (CS) rule by dropping one particle
along one unstable slope, it will trigger three neighboring
sites to topple by CS mechanism, and another toppling
chain occurs as 1 → 3 → 7 → ..., i.e., m = 2, 4, 6, ...
offsprings per initial particle.

Diffusion limited branching annihilating random walks
(BARW) have been studied by field-theory methods (for a
recent review see [22] and references therein). It has been
recognized that dc = 2 is the upper critical space dimen-
sion, and that BARW with even number of offsprings in
d = 1 belong to PC universality class, whereas the directed
percolation (DP) universality class was found in the case
of odd number of offsprings. Two examples of dynamical
processes in 1 + 1 dimension belonging to PC universal-
ity class have been studied numerically in references [23,
24]. It should be stressed that in contrast to BARW and
DP processes, the present models A and B are dynamical,
and thus the propagation rules apply statistically and de-
pend on the history of the state of the system. Recently
an analogy between the directed percolation and stochas-
tic dynamical model with critical height rules has been
discussed in reference [25].

In model B, short correlation time makes the relax-
ation at a site less effective with decreasing p, and thus
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Fig. 6. Transverse section of the pile at distance ` = 48
from the top of pile for p = 0.435 in model B (below), and for
p = 0.382 in model A (top).

Table 1. Critical exponents at p = 0.4 in models A and B, and
for parity-conserving (PC), and mean-field universality classes
(MF-SOC).

E–M model A PC model B MF-SOC
θ 0.25 2/7 0.78 3/4
z 1.13 8/7 1.33 4/3

τs − 1 0.21 2/9 0.68 0.66
τn − 1 0.19 — 0.52 1/2
χ 0.05 — 0.18 ?

efficient building-up of heights occurs, leading eventually
to ρ(p?) ≈ 1 (a transverse section of the pile in model B
at p? is given in Fig. 6 (bottom)). Therefore, when an in-
stability starts, it may trigger a mixture of branching pro-
cesses described above, making an instability transferred
back and forth on two-dimensional lattice and evolving
in time. Fractal dimension associated with the mass of
avalanches at the edge of scaling region was found to be
Dn(p?) ≈ 2 (see inset to Fig. 5). Thus an avalanche ap-
pears to be compact in 2-dimensional space and, since next
toppled sites are neighbors in time (tc = 1), it represents
a connected object in (2 + 1)-dimensions. Starting an in-
stability in full lattice, i.e., with no threshold condition,
will trigger an avalanche which propagates as a directed
percolation cluster in 3-dimensions, until eventually too
many sites will have heights zero and the avalanche will
stop. Thus p? should coincide with the site-directed per-
colation threshold on simple cubic lattice pSDPc = 0.435
[26]. Mass of avalanche is defined as the number of parti-
cles that slide during an avalanche, and thus it is equiva-
lent to number of branchings. Therefore, since for p = p?

the effective dimension Dn(p) reaches the upper critical
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dimension of BARW, we may expect mean-field univer-
sality class for the scaling behavior of avalanches. Our nu-
merical results listed in Table 1 confirm this conclusion.
A schematic phase diagram is shown in Figure 7.

The situation is different in model A (cf. Fig. 1), where
decreasing diffusion probability p an avalanche is either
extinct quickly (short avalanches), or lives much longer
(large avalanches) with large separation times [14]. In
turn, this leads to the efficient topplings at each affected
site due to many attempts within correlation time tc � 1.
In the resulting steady state most of the sites have heights
h < hc (cf. Fig. 6 (top)). Therefore, only toppling by CH
rule takes place and threshold condition is still active, in
contrast to model B. In model A a toppled site (i, j) at
time t may trigger topplings at time t+ 1 at three neigh-
boring sites, since the site toppled at t− 1 time step will
not fulfill the threshold condition (h ≥ 2) at time t+ 1. It
turns that among three neighbors less than two sites top-
ple in the average, therefore leading to a chain of toppled
sites with few branches, which is embedded in (2 + 1)-
dimensional space-time. However, affected sites which do
not topple due to low probability p at first attempt may
topple in later time steps before the avalanche dies off,
thus starting a new chain. The avalanche is made of set of
such chains, and has the fractal dimension Dn = 1.48. We
believe that this effectively low dimensional BARW pro-
cess, although it takes part in (2 + 1)-dimensional space-
time, is the reason for PC universality class in model A.
Another reason for the occurrence of PC universality class
in reaction-diffusion processes might be the existence of
more than one symmetric absorbing states, as discussed in
[23,27]. The process is reminiscent to bond-directed per-
colation in 3-dimensional simple cubic lattice, thus we also
expect that p? ≤ pBDPc = 0.382 [26]. In the phase diagram
in Figure 7 phase boundaries for model A (dashed lines)
separate reactive phase from the critical and noncritical
absorbing phases.

In the phase diagram in Figure 7 phase boundaries
for model A (dashed lines) separate nonconducting phase
from the conducting critical and noncritical phases. In
model B the noncritical conducting phase exists only along
the line ρ = 1 below MF point, and a finite slope occurs
via a phase transition at SB point [13]. On the other hand,
in model A our results suggest that noncritical steady
states occupy a finite region close to the right corner, and
that a finite slope occurs asymptotically at p = 0, ρ = 1.
Further analysis is necessary in order to find precise loca-
tion of the PC point and the nature of phase transition
between critical and noncritical conducting states. Along
the phase boundaries between the points PC and DR, and
between MF and DR, we have the nonuniversal criticality
of model A and model B, respectively, discussed in the
present work. The point marked by DR at ρ = 0.5, p = 1
corresponds to the universal SOC of Dhar-Ramaswamy
model.

Sets of the exponents for p = 0.4 are summarized in
Table 1. Exponents in the model B at this value of p are
estimated from the straight sections of lines in the subcrit-
ical region for smaller lattice size L = 128. Value of the
exponent τs is taken from reference [13]. For comparison,
shown are also the numerical values of the exponents for
PC universality class, from reference [21], and mean-field
self-organized criticality exponents, from reference [28].
Note that our exponent θ corresponds to the survival
probability distribution exponent δ in reference [21], and
z ≡ 2ν⊥/ν‖ and that the scaling relation τs−1 = θ/(θ+1)
holds. The exponents τn for mass of avalanche and rough-
ness exponent χ are unique for granular piles, and can
not be defined in models of chemical reactions or dam-
age spreading, considered in references [23,24]. We esti-
mate roughness exponent χ from the contour of several
transverse sections of the pile (two examples are given
Fig. 6). For instance, by using box counting method we
find the fractal dimension of the contour curve in model B,
as df = 1.179−1.183, and using the expression χ = df −1
leads to the value listed in Table 1.

5 Conclusions

We have shown that sandpile automata with mixed re-
laxation rules of stochastic diffusion and deterministic
branching processes are capable of describing nonunuiv-
ersality of the self-organized critical states and a loss of
scaling at a critical value of the control parameter, in
a qualitative agreement with observed behavior in natu-
ral and laboratory granular flow. Differences in the relax-
ation rules due to internal correlation time lead to distinct
dynamic critical states. In particular, unlimited (within
lifetime of an avalanche) correlation time tc in model A
leads to a multifractal scaling behavior and scaling ex-
ponents of large avalanches decrease with decreasing val-
ues of the control parameter p. On the other hand, fi-
nite correlation time tc = 1 in model B leads to increase
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of the scaling exponents with decreasing p, and to finite-
size scaling properties of avalanches in the entire scaling
region p? ≤ p < 1. At the edge of the critical region at
p?, dominating relaxation mechanisms of modulo two con-
serving branching processes and effectively low dimension-
ality of the processes, lead to criticality in the parity con-
serving universality class in model A. In model B building
up of a global slope appears to be dominant on top of
the above branching processes, which thus appear to have
the effective dimension which exceeds the upper critical
dimension of BARW, and thus mean-field scaling expo-
nents. It should be stressed that the numerical values of
the exponents listed in Table 1 prove the closeness of these
universality classes within numerical error bars, which we
estimate as 0.03. Value of the exponent τn = 1.66 in
mean-field models is known only numerically [28], whereas
in branching processes, which are equivalent to sandpiles
with a fixed number of grains per toppled site, there is
the equality τn = τs = 3/2. Study of the details of the dy-
namic phase transition in these models, e.g., in terms of
the order parameter and its fluctuations, is left out of the
present paper (see, Ref. [13] for appearance of finite slope
at SB point in model B). However, due to scaling relations
among various exponents at the transition, the observed
different universality classes of avalanche statistics at p?

indicate that the exponents of the order parameter β and
correlation length ν‖ should belong to two distinct uni-
versality classes of the dynamic phase transitions in these
models. Our results suggest that although basic relaxation
rules in laboratory granular piles and natural landslides
might be the same, details of actual implementation of
these rules such as variation of control parameter during
the course of an avalanche might lead to entirely different
critical states.
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13. S. Lübeck, B. Tadić, K.D. Usadel, Phys. Rev. E 53, 2182

(1996).
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